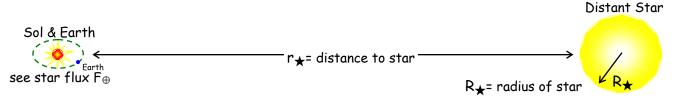
## STAR TEMPERATURE AND SIZE

## TEMPERATURE FROM THE LINE SPECTRUM: THE SPECTRAL CLASS

If  $\lambda_{\text{peak}}$  isn't known, thanks to the work of Cecilia Payne-Gaposchkin (1900-1979), the spectral class can be used to estimate the temperature. This is done by interpolation between the minimum and maximum temperatures of each spectral class:

Temperature from Spectral Type  $T = T_{\text{max}} - \left\{ \left( \text{subclass} \right) \times \left( \frac{T_{\text{max}} - T_{\text{min}}}{10} \right) \right\}$ 

Here the subclass is the number given with the spectral type (e.g. the 2 in Sol's G2),  $T_{\text{max}}$  is the highest temperature in the spectral class and  $T_{min}$  is the lowest.


## SIZE OF AN OPAQUE, SPHERICAL STAR: THE STEFAN-BOLTZMANN LAW:

The Stefan-Boltzmann law relates the luminosity of a star to its temperature and its emitting surface area  $(4\pi R^2)$ 

 $\mathsf{R}_{\bigstar} = \sqrt{\frac{\mathsf{L}_{\bigstar}}{4\pi\sigma\mathsf{T}^4}}$ RADIUS FROM LUMINOSITY AND TEMPERATURE

where  $R_{\star}$  is the radius of the star in m,  $\sigma$  = 5.67 × 10<sup>-8</sup> W/M<sup>2</sup>K<sup>4</sup>,  $R_{\odot}$  = 6.96 × 10<sup>8</sup> m, and  $r_{\oplus}$  = 1.496 × 10<sup>11</sup> m.

| STAR               | FIELD GUIDE TO THE STARS AND PLANETS TABLE A2 |                |                |               | CALCULATED  FG A3 LUMINOSITY SIZE |                                        |                         |                        |                                         |                                 |
|--------------------|-----------------------------------------------|----------------|----------------|---------------|-----------------------------------|----------------------------------------|-------------------------|------------------------|-----------------------------------------|---------------------------------|
|                    | V                                             | M <sub>V</sub> | r <sub>★</sub> | Spec.<br>Type | T<br>K                            | L <sub>★,SOL</sub> In L <sub>sol</sub> | L <sub>★</sub> In Watts | R★<br>Billions<br>of m | R <sub>★</sub> /R <sub>⊠</sub> (number) | R <sub>★</sub> / r <sub>⊕</sub> |
| Polaris<br>(α UMi) | 2.0                                           | -4.1           | 431            | F5 I          |                                   |                                        |                         | ,                      |                                         |                                 |
| Vega<br>(α Lyr)    | 0.03                                          | 0.6            | 25             | A0 V          |                                   |                                        |                         |                        |                                         |                                 |
| Deneb<br>(α Cyg)   | 1.25                                          | -7.5           | 1467           | A2 I          |                                   |                                        |                         |                        |                                         |                                 |
| Altair<br>(α Aql)  | 0.77                                          | 2.1            | 17             | A7 IV         |                                   |                                        |                         |                        |                                         |                                 |
| Betelgeuse (α Ori) | 0.5                                           | -5.0           | 522            | M2 I          |                                   |                                        |                         |                        |                                         |                                 |
| Alnitak<br>(ς Ori) | 2.05                                          | -5.5           | 817            | 09.5 I        |                                   |                                        |                         |                        |                                         |                                 |



shines out luminosity 
$$L_{\star}=10^{\left(\frac{M_{Sol}-M_{\star}}{2.5}\right)}L_{Sol}$$
 and  $L_{Sol}=3.83\times10^{26}$  Watts

← Don't skip this!

Which star impresses you the most? Why?